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1. SUMMARY OF THE RESEARCH PLAN

Quantum states show many intriguing non-classical features, foremost the one of entanglement. These are a

type of correlations that cannot be explained by any classical means [1]. Importantly, quantum entanglement is

recognized to be a key ingredient for emerging applications that are based on properties of quantum states, such

as novel types of computers, secure communication methods, and precision measurements [2]. It also represents

a core aspect of many phenomena in solid-state physics, quantum correlations being integral for the collective

properties of particles on the mesoscopic scale.

While bipartite entanglement of pure states is well understood, the investigation of entanglement between

many particles is a timely and relevant endeavor [3]. In order to recognize the full potential that quantum

correlations can provide, it is important to obtain further insights into how entanglement can be shared between

many particles. Likewise, error-correcting methods used for quantum information processing strongly rely on

features of multipartite entanglement [4]: by distributing information onto many particles, it is possible to

recover the information in the case of environmental disturbance or particle loss.

Here, we propose to study entanglement in systems consisting of multiple particles with so-called monogamy

relations [5]. These constrain the shareability of quantum correlations, and often involve invariant quantities that

are independent of particle exchange and of the local basis chosen. However, only few monogamy relations are

known, the most famous one being the Coffman-Kundu-Wootters inequality [6]. An example of such a relation

in the context of quantum error-correcting codes is the so-called shadow enumerator, which was introduced by

Rains. With it, he obtained some of the strongest bounds on the existence of quantum codes to date [7]. While

its physical interpretation was originally unclear, we could show that this shadow enumerator in fact represents

monogamy relations of order two, applicable to all finite dimensions [A].

In this project, we aim to derive families of higher-order monogamy relations in a systematic way by means of

the generalized shadow inequalities [8]. Rains provided a recipe to obtain these, but so far only one example of

order two is known. Our goal is to obtain explicit families of higher-order inequalities, which are monogamy-like

relations. This will be done by both analytical as well as computational methods, which additionally helps to

mitigate inherent risks of this ambitious project. After interpreting the relations obtained in terms of physically

meaningful quantities, we will cast them into corresponding weight enumerators, which are tools for the analysis

of quantum error-correcting codes.

Furthermore, these relations have applications for entanglement detection, and compatibility conditions for
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reductions to originate from a joint state can be derived [9]. The development of these methods will likely

help to settle long-standing questions such as the existence of certain code spaces and of highly entangled

states. By establishing new connections between the fields of quantum error-correcting codes and multipartite

entanglement, we will also bring these communities closer together. Thus the successful conclusion of this

project will not only shed a new light on the nature of quantum correlations shared between multiple parties

and on the constraints that govern their distribution, but will also have a broader impact in related fields such

as in solid-state physics, theoretical chemistry, and in the theory of classical error-correcting codes.

2. RESEARCH PLAN

2.1. Current state of research in the field

Multipartite entanglement & monogamy relations: A pure quantum state |ψAB⟩ of two particles is called

entangled, if it cannot be written as the tensor product of the single-particle states,

|ψAB⟩ ≠ |ψA⟩ ⊗ |ψB⟩ . (1)

Thus, the defining feature of pure entangled states is that they are not completely characterized by their single-

particle reductions. The paradigmatic example of an entangled state on two subsystems having two levels each

is the famous Bell state, |ψ−⟩ = (|01⟩ − |10⟩)/
√

2, which exhibits strong non-classical correlations between the

local subsystems.

While the entanglement properties of bipartite pure states are well understood, multipartite states allow

for more freedom in the distribution of quantum correlations between the different parties. This gives rise

to different classifications of multipartite entanglement with respect to different entanglement properties or

operational procedures. As an example, considering local operations and classical communications gives in the

case of three qubits rise to two entanglement classes, which are represented by the W- and the Greenberger-

Horne-Zeilinger states,

|W ⟩ = (|100⟩ + |010⟩ + |001⟩)/
√

3 ,

|GHZ3⟩ = (|000⟩ + |111⟩)/
√

2 . (2)

However, entanglement cannot be shared arbitrarily among the individual subsystems. Rather, so-called

monogamy of entanglement relations constrain the possible correlations which quantum states can exhibit [5].

In its most basic form, this concept can be expressed as follows: If two parties A and B are maximally entangled

with each other, then neither A nor B can also be entangled with a third party C. Monogamy relations are

different formulations of this concept, imposing restrictions on how quantum correlations can be shared by

multiple parties. This was first made precise for 2-level systems in a seminal article by Coffman, Kundu, and

Wootters [6],

C2
AB + C2

AC ≤ C2
A(BC) . (3)

Above, CAB , CAC , and CA(BC) denote the squared concurrences between parties A and B, between A and C, and

between A and parties BC grouped together, measuring entanglement between these. Considering the three-

partite states introduced in Eq. (2), the W-state reaches equality in above equation. In contrast, the GHZ state
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does not reach equality; its so-called tangle is non-zero and the state contains essential three-way entanglement.

A conjecture extending this Coffman-Kundu-Wooters inequality [Eq.(3)] to more parties was later proven by

Osborne and Verstraete [10], and similar relations constraining multipartite quantum correlations have been

found for other measures such as squashed entanglement, entanglement negativity, and non-local correlations

[11–14]. However, systematic methods to derive new monogamy relations are lacking, and novel approaches to

the monogamy of entanglement and other correlations would be desirable.

Given a measure of bipartite entanglement, one could argue that those states, which show maximal entan-

glement across all bipartitions, are the most entangled ones [15]. Such pure states, whose marginals, obtained

after tracing out at least half of the parties, are all maximally mixed, are also called absolutely maximally

entangled (AME) [16, 17]. For qubits, such states do only exist for n = 2, 3, 5, 6 parties [4, 18], [E]. This can be

seen as a manifestation of monogamy in quantum states; correlations cannot be distributed arbitrarily among

the subsystems, but are constrained. Currently, the existence of AME states of larger dimensions is still an

open problem [4]. It is likely that monogamy relations of higher order would help to resolve these and related

questions in multipartite entanglement, and will further the understanding on what kind of correlations can

arise from quantum states.

Quantum error-correcting codes: In order to perform quantum information processing in the presence of

disturbance from the environment, some sort of error correction has to be performed on the information carriers,

which are multipartite quantum states. Quantum error-correcting codes (QECC) allow for such a mechanism.

More precisely, QECC are subspaces of the Hilbert space that can be reconstructed completely, if a disturbance

occurs on few particles only. However, finding good codes is a challenging endeavor, and various techniques have

been devised to keep the information imprinted onto the quantum states safe and their manipulation feasible.

Developed over two decades ago in a series of papers by Shor, Laflamme, and Rains [7, 19, 20] and originating

in invariant theory [21], quantum weight enumerators are mathematical tools to characterize QECC. Weight

enumerators are polynomials in specific expectation values, that are obtained from certain subsets of particles

only. These are invariant under the local basis chosen, and crucially, they can be used to exclude the existence of

certain codes with the help of linear programming. Aside from the primary and dual weight enumerators from

Shor and Laflamme, Rains’ shadow enumerator is of notable importance [7]. It is derived from the so-called

shadow inequality of order two: For two positive semi-definite Hermitian operators M1,M2, and a fixed subset

T ⊆ {1, . . . , n}, the following inequality holds.∑
S⊆{1,...,n}

(−1)|S∩T | Tr[TrSc(M1) TrSc(M2)] ≥ 0 , (4)

where Sc denotes the complement of S in {1, . . . , n}. This resulted in some of the strongest general bounds on

the existence of quantum and classical error-correcting codes to date [7, 22].

The existence of certain QECC is related to the existence of certain quantum states, pure states being one-

dimensional codes [4]. In this context, Eq. (4) relates reductions of a joint state, constraining the distribution

of correlations arising in multipartite quantum systems. Therefore, Eq. (4) is a monogamy relation, and in fact

can be used to prove the non-existence of certain putative quantum states, e.g. of higher-dimensional AME

states [A].

However, no tight bounds are known for the existence of QECC. This is to be expected, as the main tool

at hand, the theory of quantum weight enumerators, does not describe a code completely: The presently
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used weight enumerators are polynomial invariants of degree two only [21]. While the theory of higher-order

invariants has seen many developments [23–30], its application to QECC and multipartite entanglement has

been limited. Thus an extension of the quantum weight enumerator theory incorporating these developments

in combination with higher-order monogamy relations would be of significant interest. In particular, this could

settle long-standing open questions on parameters of putative codes and highly entangled states.

2.2. Current state of own research

States determined by their marginals: The quantum marginal problem asks, whether, given a putative

collection of marginals, a joint state either exists or must be unique. We approached this question from a result

obtained by Linden et al.: Almost all pure states of three qubits are completely determined by their 2-party

reduced density matrices [31]. We showed that a similar statement is not valid for states of five or more qubits.

For this, we constructed a witness based on pure states having maximally mixed marginals, and formulated the

question as a semi-definite program [B]. We could show in a follow-up article that states of four parties having

equal but arbitrary dimensions are indeed also determined by their 2-body reductions, if one considers pure

states only [C].

With Simone Severini, I approached this topic from another point of view, extending the famous Ulam graph

reconstruction problem to quantum states [D]: Namely the question, if, given a complete but unlabeled collection

of marginals of size (n−1), the joint state on n parties may uniquely be determined. Interestingly, the existence

of a joint state can in some cases already be excluded when only having access to all unlabeled marginals of

size ⌊n
2 ⌋ + 1.

In these projects I learned different tools for reasoning about relations that connect joint states to their

reductions, which is a core aspect of monogamy relations.

Absolutely maximally entangled states: Here, we resolved a long-standing question in multipartite en-

tanglement, originally posed in the seminal work of Calderbank et al. on quantum error-correcting codes [32]:

whether or not a pure state of seven qubits exists, whose three-body marginals are all maximally mixed. Nu-

merical approaches by various researchers suggested the absence of such a state; an analytical proof however

remained elusive [4]. By combining properties of such states, obtained from their Schmidt decomposition and

anticommutation relations of Pauli operators, we characterized this problem in the Bloch representation [33].

This enabled us not only to obtain a proof for the non-existence of a seven qubit AME state, but in fact could

exclude all but the known cases of n = 2, 3, 5, 6 qubits, all of which are stabilizer or graph states [E].

During this work I learned to work with the Bloch representation, which will be crucial to analyze the

generalized shadow inequalities.

Quantum weight enumerators: As my most recent research line, I have been working on the quantum weight

enumerator theory of quantum error-correcting codes. In particular, we obtained a proof of the MacWilliams

identity in the Bloch representation, and applied tools from QECC to analyze multipartite entanglement. This

resulted in new bounds on the existence of AME states having higher local dimensions [A]. We could show that

the main method used for this, the so-called shadow enumerator, represents a family of monogamy relations

for the correlations appearing in quantum states. This generalizes relations of order two for qubit-systems that

were found by Ref. [13] to all finite dimensions. Furthermore, we showed that a positive but not completely
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positive map can be derived from it [F], extending the universal state inversion and the reduction criterion for

entanglement detection [9, 34]. This interpretation of the shadow enumerator as monogamy relation and its

implications are novel, and strengthens the understanding of the connections between QECC and multipartite

entangled systems.

The expertise I acquired in this project will be relevant to incorporate the monogamy-like higher-order

relations into the quantum weight enumerator machinery.

Project-related publications:

[A] FH, C. Eltschka, J. Siewert, and O. Gühne,
Bounds on absolutely maximally entangled states from shadow inequalities, and the quantum MacWilliams
identity.
arXiv:1708.06298 (2017).

[B] FH and O. Gühne,
Characterizing Ground and Thermal States of Few-Body Hamiltonians.
Phys. Rev. Lett. 117, 010403 (2016).

[C] N. Wyderka, FH, and O. Gühne,
Almost all four-particle pure states are determined by their two-body marginals.
Phys. Rev. A 96, 010102(R) (2017).

[D] FH and S. Severini,
Some Ulam’s reconstruction problems for quantum states.
in preparation.

[E] FH, O. Gühne, and J. Siewert,
Absolutely Maximally Entangled States of Seven Qubits Do Not Exist.
Phys. Rev. Lett. 118, 200502 (2017).

[F] C. Eltschka, FH, O. Gühne, and J. Siewert,
Family of Correlation Equalities and Monogamy Relations for Entanglement,
in preparation.

http://arxiv.org/abs/1708.06298
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.117.010403
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.96.010102
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.118.200502
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2.3. Detailed research plan

The proposed research aims at answering the following questions:

(1) Which known relations that constrain quantum correlations originate from the gener-

alized shadow inequalities? Can one find new monogamy-like relations for small systems

composed of three to four parties, and obtain conditions for the compatibility of reduced

states to stem from a joint quantum state?

(2) Can an explicit family of higher-order shadow inequalities be found? Can these be un-

derstood as physically meaningful higher-order monogamy relations, and be incorporated

into the quantum weight enumerator machinery to characterize quantum error-correcting

codes?

The answers to these questions will have strong impacts in both the fields of multi-

partite entanglement and of quantum error-correcting codes. In particular, we expect to

be able to provide stronger bounds on the existence of quantum error-correcting codes and

to introduce novel tools for the analysis of entanglement in multipartite states, crucial for

the understanding of collective particle behavior in many-body systems on the quantum

scale.

Starting with small systems, we aim to both understand existing monogamy relations and invariants in the

context of the generalized shadow inequalities, as well as to derive novel types thereof. Then, we intend to

obtain an explicit family of higher-order shadow inequalities for an arbitrary number of parties, from which

general monogamy-like relations and possibly new types of quantum weight enumerators follow.

A cornerstone of this project is a relation derived by Rains in a paper on polynomial invariants [8] that

generalizes Eq. 4, the generalized shadow inequalities: For positive semi-definite operators M1, . . . ,Mk, and any

Hermitian idempotent λ in the group algebra of Sn
k , the n-fold direct product of the permutation group Sk, the

following expression is non-negative. ∑
π∈Sn

k

λ(π)A′
π(M1,M2 . . . ,Mk) ≥ 0 . (5)

In above equation, A′
π(M1,M2, . . . ,Mk) are polynomial invariants, obtained by tracing over permuted subsys-

tems of the operators M1, . . . ,Mn. Thus if M1 = · · · = Mk, the generalized shadow inequalities represent

relations between polynomial invariants of quantum states or QECC. In the case of k = 2, Rains gave an exam-

ple of such a shadow inequality having order two, namely Eq.(4), leading to the shadow enumerator and a family

of monogamy relations [F]. However, aside from a degree four relation presented by Ref. [13], applicable only

to two-level systems, no other explicit relations involving higher-order invariants are known. Thus we propose

a general approach to such relations, which derives from the generalized shadow inequalities. This will result in

explicit new higher-order relations between invariants, and likely will clarify their interpretation as monogamy

relations constraining the distribution of correlations.

We are convinced that this program is both feasible as well as of significant interest: higher-oder monogamy

relation have already been discovered [13], and the shadow inequality of degree two are indeed monogamy

relations with interesting applications [E, F]. From these preliminary results and insights, as well as by judging
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from the structure of the generalized shadow inequalities [Eq (5)], we are confident that explicit higher-order

inequalities will have equally interesting features and applications as those which were found in the case of

k = 2.

(1) First research line: Higher-order shadow inequalities for a small number of parties.

Here, we focus on systems consisting of a small number of parties. This allows us to analyze existing monogamy

relations and invariants [6, 10–14, 24–28, 35, 36] in the context of the generalized shadow inequalities, as well

as to analytically derive new higher-order relations. Crucially, Eq. (5) gives a recipe on how to obtain these: A

Hermitian idempotent has to be found in the group algebra of Sn
k , the n-fold direct product of the permutation

group Sk. For this, we will start with a small number of parties n and a small order k. In light of the results

in Ref. [13] concerning order four we are confident that this can be done analytically. Additionally, Rains has

shown certain higher-order invariants reduce to those of lower order, which likely will simplify the analysis

further [8].

We expect that the relations obtained will also lead to new compatibility conditions between subsystems of

a joint state, similar to those found by Butterley et al. [37]: In order that reductions ρAB , ρAC , and ρBC stem

from a joint state ρABC on three qubits, one has following necessary condition,

0 ≤ 1− ρA − ρB − ρC + ρAB + ρAC + ρBC ≤ 1 . (6)

In fact, this relation can be seen as a direct consequence of the order-two shadow inequality [F], and we aim to

obtain similar compatibility conditions from higher-order inequalities. Finally, these will also yield positive but

not completely positive maps, which are of potential interest for entanglement detection.

Milestones for the first research line:

M 1.1 Analyze the higher-order shadow inequalities in the context of known monogamy relations and

invariants.

M 1.2 Derive explicit higher-order relations for three to four parties.

M 1.3 Obtain compatibility conditions on subsystems to originate from a joint state, and positive maps

for entanglement detection.

(2) Second research line: A family of higher-order shadow inequalities.

In this second research line, we intend to construct explicit higher-order shadow inequalities in a systematic

way. First, we aim at providing an efficient algorithm to find Hermitian idempotents in the group algebra of

Sn
k . With the help of a computer algebra system such as Mathematica or Maple, we will create tables of such

idempotents. Both the algorithm as well as the tables will be uploaded to an online repository such as github

for the use of other researchers.

Having access to explicit idempotents, one can obtain higher-order shadow inequalities directly from Eq.(5).

With these examples at hand, and the insight gained from Milestones 1.1 and 1.2, our goal is to obtain a

complete family of monogamy-like relations for invariants. It will be crucial to understand them in terms of

physically relevant quantities, which are likely similar to those which were obtained for the inequality of order

two.

Finally, we aim to cast the resulting relations into quantum weight enumerators of higher order: Already
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proposed by Rains [8], this will likely be a powerful method to characterize QECC. As in the case of the

degree-two enumerators, it might be possible to formulate linear or quadratic programs to determine higher

order weight enumerators of putative codes, and to obtain bounds on possible code parameters. Equipped with

these novel tools, we propose to attack long-standing open questions in the field of QECC, such as the existence

of a putative stabilizer code having parameters [[24, 0, 10]]2 or the existence of an AME state of four six-level

systems [38]. Furthermore, it would be interesting to obtain general bounds on the existence of codes, and in

particular to prove a conjecture on so-called quantum maximum distance separable (QMDS) codes: For most

QMDS codes, the minimum distance is smaller than the local dimension [39].

Milestones for the second research line:

M 2.1: Provide an efficient algorithm to find Hermitian idempotents, and provide online-tables of those

found.

M 2.2: Provide a family of monogamy-like relations in terms of physically relevant quantities.

M 2.3: Construct corresponding weight enumerators. Obtain bounds on QECC and AME states.

Strategies and risks:

While the proposed research springs from the work done during my thesis, namely understanding and applying

tools from QECC to problems in multipartite entanglement, the approach we put forward to derive higher-order

monogamy relations is to our knowledge completely novel. It represents a significant step ahead from the work

done during my PhD. We should also mention that the project is ambitious, and naturally contains an amount

of inherent risk. Namely, it is unclear whether or not a complete family of higher-order monogamy relations

or weight enumerators exists, and how it can be found analytically. To mitigate these risks, we approach the

research questions from two directions: First, we will analyze small systems, where we are confident that an

analytic analysis can be done. Second, these relations (i.e. a Hermitian idempotent in Sn
k ) can also be obtained

with the help of a computer algebra system such as Mathematica or Maple. Thus Milestones 1.1, 1.2, 2.1 and

parts of Milestone 1.3 are thus certainly feasible, even if analytical methods fail.

The supervisor Prof. Jens Siewert has a strong expertise on monogamy relations and invariants [30, 35, 36,

40, 41], in particular being an author of Ref. [13] that introduced a degree-four monogamy relation. Together

with the knowledge that I acquired during my PhD on multipartite entanglement and on the quantum weight

enumerator theory, we are confident that we can successfully address the challenges of this ambitious project.

2.4. Schedule and milestones

Month 1-6: Focus on Milestones M 1.1 and M 1.2. To start, we analyze the higher-order shadow inequalities

in the context of existing monogamy relations and invariants. By the end of the first six months, we aim to

obtain an explicit higher-order relation for three or four parties.

Month 7-12: Focus on Milestones M 1.3 M 2.1. During the next six months, we will derive correspond-

ing compatibility conditions and positive maps for entanglement detection. By the end of the first year, we aim

to have the algorithm to find Hermitian idempotents implemented. We will provide the algorithm as well as

tables of idempotents online repositories such as github.
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Month 13-18: Focus on Milestones M 2.2 and 2.3. In the last six months, we will focus on obtaining

families of higher-order shadow inequalities. We expect that these indeed will be interesting monogamy rela-

tions, which can be cast into corresponding weight enumerators. With these, we will aim to solve open cases of

putative QECC and AME states and adress the QMDS conjecture.

Milestones Year 1 Year 2Q1 Q2 Q3 Q4 Q1 Q2M 1.1: Analyse higher-order shadow inequalitiesM 1.2: Derive explicit higher-order relations for few partiesM 1.3: Obtain compatibility relations and positive mapsM 2.1: Provide algorithm for higher-order shadow inequalitiesM 2.2: Provide family of monogamy-like relationsM 2.3: Construct weight enumerators, obtain bounds on QECC
FIG. 1. Schematic view of the time-table for the project.

2.5. Reason for the choice of the research institution

The University of the Basque Country (UPV/EHU) has dedicated research groups in the fields of quantum

information, science and technology under the QUINST umbrella organization. These include groups working on

quantum information, quantum optics and cold atoms, quantum control, spintronics, quantum metrology, atom

interferometry, superconducting qubits and circuit QED, and on the foundations of quantum mechanics. This

represents an active environment for scientific knowledge exchange and for close interdisciplinary collaboration.

In particular, the supervisor for this project, Prof. Jens Siewert, has a remarkable knowledge in the fields

of entanglement characterization by means of local invariants and monogamy relations. His expertise will be

indispensable for addressing the research challenges presented in this proposal. We have an active and close

collaboration, from which two successful projects resulted in a short time [A], [E]. A third project on monogamy

relations of order two, related to the shadow machinery, is currently under its way [F]. I regard an intensified

cooperation with him in the form of post-doctoral studies under his supervision and guidance as the next logical

step for my academic career.

Furthermore, my current institution, the University of Siegen, and the University of the Basque Country

are strongly connected. The groups of Prof. Otfried Gühne, Prof. Geza Tóth, Prof. Jens Siewert, and Dr.

Matthias Kleinmann have collaborated extensively together, joint group retreats as well as numerous visits and

exchanges of personnel have only strengthened these ties. My transfer to Bilbao thus would foster this close

cooperation, boosting the transfer of skills and expertise between the two universities.

2.6. Relevance and impact

The successful conclusion of this project will most likely have substantial impact and relevance: The planned

research addresses timely questions in the fields by merging techniques of multipartite entanglement and quan-

tum error-correcting codes. It provides a novel approach to monogamy and compatibility relations for multi-

partite entanglement and introduces new tools to characterize QECC.

To our knowledge, this proposal is the first systematic approach to obtain complete families of monogamy-
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like relations for multipartite quantum states in all finite dimensions. Understanding features of multipartite

entanglement is not only relevant for quantum information processing tasks, but also for many applications in

many-body physics. In particular, understanding how the distribution of quantum correlations is constrained

represents a key ingredient for the analysis of condensed matter systems and to numerically calculate ground

state energies in theoretical chemistry [42]. Furthermore, by extending the theory of weight enumerators, we

anticipate that we will be able to approach many open problems in multipartite entanglement and QECC, such

as the QMDS conjecture and stronger bounds on the existence highly entangled states. This will also have direct

implications for classical codes, because of the equivalence between quantum stabilizer codes and classical codes

over finite fields [32, 43]. By merging methods from the fields of multipartite entanglement and QECC, our

work will have a broader impact by bringing these communities together. Thus the expected results are very

likely to spur further work.

We will publish our work in internationally visible open-access journals and disseminate the results at inter-

national workshops and conferences. The tables of Hermitian idempotents and the program to obtain these will

be made available online for the use of other researchers.

2.7. Relevance for personal career development

I regard this early Postdoc.Mobility fellowship as the integral next step in my career path towards becoming

a group leader in science. It allows me to carry out my own research program as an independent post-doctoral

scientist, and to establish my expertise at the intersection of quantum error-correcting codes and multipartite

entanglement.

The fellowship will give me the opportunity to strongly expand and deepen my knowledge and skill set:

working in the multidisciplinary QUINST group has the potential to yield new cross-disciplinary collaborations,

and will widen my scientific horizon significantly. The supervisor Prof. Jens Siewert has a unique expertise

on monogamy relations, and I can learn crucial techniques used for invariants and monotonicity proofs from

him. I also look forward to work with his collaborators, such as Christopher Eltschka from the University of

Regensburg, Marcus Huber from the IQOQI Institute in Vienna, and others. My expanded professional network

will be a key ingredient for my academic career and my subsequent return to Switzerland.

Next to research, I will have ample opportunities to hone my competence in lecturing and supervision. In the

context of the University of the Basque Country’s Master program on Quantum Science and Technology, I aim

to teach block courses on aspects of multipartite entanglement, classical and quantum error-correcting codes,

and on stabilizer states. Also, I will co-supervise a PhD student joining the group of Prof. Jens Siewert next

year. This will further contribute to my hirability, teaching and supervision being an integral part of academia.

With no doubt, the successful conclusion of this research program will substantially improve my long-term

academic employability and career prospects. The skills acquired and collaborations formed will be highly

valuable for my return to Switzerland, where I plan to obtain competitive funding such as a Marie Sk lodowska-

Curie fellowship or an Ambizione grant as my next step towards a permanent position in science.
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